Assignment 8

This homework is due Friday March 27.

This assignment is *longer than usual*. It is worth $\frac{3}{2}$ of a usual homework in terms of course grade.

There are total 65 points in this assignment. 58 points is considered 100%. If you go over 58 points, you will get over 100% for this homework (but not over 115%) and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper *and give credit to your collaborators in your pledge*. Your solutions should exhibit your work and contain full proofs. Bare answers will not earn you much.

This assignment covers Sections 5.2–5.5 of Textbook.

- (1) [10pt] Find all values of the following. (Reminder: $\log z$ is a multivalued function, $\operatorname{Log} z$ is its principal branch.)
- (2) [5pt]
 - (a) For what values of z_1, z_2 is it true that $\text{Log}\left(\frac{z_1}{z_2}\right) = \text{Log}(z_1) \text{Log}(z_2)$? Why?
 - (b) Give an example of specific values of z_1, z_2 such that $\operatorname{Log}\left(\frac{z_1}{z_2}\right) \neq \operatorname{Log}(z_1) \operatorname{Log}(z_2).$
- (3) [5pt] Use analyticity of Log z in the right half-plane $\operatorname{Re}(z) > 0$ to show that the functions $u(x, y) = \ln(x^2 + y^2)$ and $v(x, y) = \tan^{-1}(y/x)$ are harmonic in the same domain.
- (4) [5pt] Solve the following equations (i.e. find all possible values of z).

(a)
$$\text{Log}(z) = 1 - i\frac{\pi}{4}$$
.
(b) $\text{Log}(z-1) = i\frac{\pi}{2}$.
(c) $e^{iz} = -1$.
(d) $\exp(z+1) = i$.

- (5) [4pt] Find the principal value of
 - (a) 4^i .
 - (b) $(-1)^{\frac{1}{\pi}}$.
 - (c) $(1+i\sqrt{3})^{\frac{i}{2}}$.
- (6) [4pt] Find all values of
 - (a) i^i .
 - (b) $(-1)^{\sqrt{2}}$.
 - (c) $(-1)^{\frac{3}{4}}$.

In which of the above cases are there infinitely many values?

– see next page —

1

- $\mathbf{2}$
- (7) [5pt] For $z = re^{i\theta} \neq 0$, show that for r > 0 and $-\pi < \theta \leq \pi$, the principal branch of the function
 - (a) z^i is given by $z^i = e^{-\theta} (\cos(\ln r) + i \sin(\ln r)).$
 - (b) z^{α} (with real α) is given by $z^{\alpha} = r^{\alpha}(\cos \alpha \theta + i \sin \alpha \theta)$.
 - (*Hint:* Use the definition of the power function.)
- (8) [7pt] Use expression of trigonometric and hyperbolic functions through the exponential function to establish the following:
 - (a) $\sin\left(\frac{\pi}{2} z\right) = \cos z$.

 - (b) $\tanh(z + i\pi) = \tanh z$. (c) $\cos 2z = \cos^2 z \sin^2 z$.
 - (d) Find a similar formula for $\cosh 2z$.
- (9) [5pt] Show that $\sin \overline{z} = \overline{\sin z}$ and that $\sin \overline{z}$ is nowhere analytic.
- (10) [8pt] Find all values of the following. (Express them as x + iy.)
 - (a) $\arcsin \frac{\sqrt{3}}{2}$. (b) $\arcsin 3$.

 - (c) $\arccos 3i$.
 - (d) $\arctan i$.
 - (e) $\arctan 2i$.
- (11) [7pt] Show that
 - (a) $\operatorname{arccos} z = -i \log \left(z + i(1 z^2)^{\frac{1}{2}} \right).$ (b) $\operatorname{arcsinh} z = \log \left(z + (1 + z^2)^{\frac{1}{2}} \right).$ (c) $\frac{d}{dz} \operatorname{arccos} z = \frac{-1}{(1 z^2)^{\frac{1}{2}}}.$